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Abstract
Dynamical dark energy (DE) has been proposed to explain various aspects of
the cosmological constant (CC) problem(s). For example, it is very difficult
to accept that a strictly constant �-term constitutes the ultimate explanation
for the DE in our Universe. It is also hard to acquiesce in the idea that we
accidentally happen to live in an epoch where the CC contributes an energy
density value ρ� = �/8πG right in the ballpark of the rapidly diluting matter
density ρm ∼ 1/a3. It should perhaps be more plausible to conceive that the
vacuum energy, ρ�, is actually a dynamical quantity as the Universe itself.
More generally, we could even entertain the possibility that the total DE is in
fact a mixture of ρ� and other dynamical components (e.g. fields, higher order
terms in the effective action etc) which can be represented collectively by an
effective entity X (dubbed the ‘cosmon’). The ‘cosmon’, therefore, acts as
a dynamical DE component different from the vacuum energy. While it can
actually behave phantom-like by itself, the overall DE fluid may effectively
appear as standard quintessence, or even mimic at present an almost exact CC
behaviour. Thanks to the versatility of such cosmic fluid we can show that a
composite DE system of this sort (‘�XCDM’) may have a key to resolving the
mysterious coincidence problem.
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1. Introduction

Modern cosmology has reached a status of a mature empirical science. It is still far away
from the level of precision of particle physics, but it is on the way. Independent data sets
derived from the observation of distant supernovae [1], the temperature anisotropies of the
CMB [2], the integrated Sachs–Wolfe effect [3], the lensing corrections on the propagation of
light through weak gravitational fields [4] and the inventory of cosmic matter from the large
scale structures (LSS) of the Universe [5] indicate altogether that our Universe is presently
under a phase of accelerated expansion. It is of course tempting to simplify this state of affairs
by just resorting to the existence of an absolutely constant (time-independent) CC term, �,
in Einstein’s equations. It is no less tempting to supersede this hypothesis with another—
radically different—one: namely to introduce a slowly evolving scalar field φ (‘quintessence’)
whose potential, V (φ) � 0, accounts for the present value of the DE, and whose equation
of state (EOS) parameter ωφ = pφ/ρφ � −1 + φ̇2/V (φ) is only slightly larger than −1
(hence insuring a negative pressure mimicking the � case). In this way, the DE can be a
dynamical quantity taking different values throughout the history of the Universe. However,
this possibility cannot easily explain why the present value of the DE is so close to the
rapidly decaying matter density, ρm ∼ 1/a3—the so-called ‘cosmic coincidence problem’.
And even if it could (as some modified quintessence models propose [6]), there is after all a
vacuum energy associated with the other fields (e.g. the electroweak Standard Model ones)
and, therefore, such hypothetical scalar field cannot be the only one responsible for the vacuum
energy. At the end of the day it does not seem to be such a wonderful idea to invent a field φ

and simply replace ρ� with ρφ � V (φ). More fundamentally, � could instead be conceived
as a ‘running parameter’ in QFT in curved spacetime, as proposed in [7]. Here we go a bit
beyond and suggest that the DE could involve, apart from a dynamical �, another collective
component, ‘X’, which does not necessarily represent any ad hoc field. It may stand for higher
order terms in the effective action, perhaps in combination with some low-energy ‘relics’
(e.g. a dilaton) from string theory, but in any case without being a full substitute for �. Of
course, we have to assume that the corresponding energy densities ρX and ρ� conspire so as
to generate the tiny value of the DE density at present—the ‘old CC problem’ [8]. While
we cannot solve this problem at this stage, the dynamical nature of � and X gives at least
allowance for this possibility to occur.

Here we focus on the second CC problem, the ‘coincidence problem’ [8]. As we shall
see, in the present framework we can provide a novel clue for a possible resolution of this
problem. To start with, we note that once we impose the Bianchi identity in Einstein’s
equations (derived from the full effective action) it acts as a kind of ‘superselection energy
sum rule’ whereby the many terms on the rhs of these ‘effective’ Einstein’s equations must
add up themselves to satisfy a local energy conservation law, irrespective of the inner details
of the particular model. One of these terms is of course the vacuum energy, ρ�, and the
other terms can be treated as the aforesaid single effective entity ‘X’, which we will refer to
sometimes as the ‘cosmon’. For obvious reasons we call this class of composite (�,X)-dark
energy models the ‘�XCDM models’ [9, 10]. In them we still have some freedom in the
way matter, vacuum and cosmon energy densities realize the local conservation law. Here
we will explore just two possibilities that we call ‘type I’ and ‘type II’ �XCDM models. In
type I models matter is conserved and the total dynamical DE (ρD = ρ� + ρX) too. In type
II models, instead, matter and cosmon densities are separately conserved, but the � variation
is compensated for by a variable gravitational coupling G. In the following, we expand on
these two possibilities and show that any of them could efficiently solve the coincidence
problem.
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(a) (b)

ρ ρ

Figure 1. (a) The Weak (WEC, ρ � 0 and ρ + p � 0) and Dominant (DEC, ρ � |p|) energy
conditions. The EOS regions of matter, quintessence (Q) and ‘standard’ phantom (P) are shown,
together with the ‘phantom matter’ (PM) region (ωe < −1 with ρ < 0); (b) The Strong energy
condition (SEC, ρ + p � 0 and ρ + 3p � 0) insuring attractive gravitation force, is only satisfied
by matter and PM.

2. Composite dark energy models

For a DE medium consisting of several fluids with pi = ωiρi (i = 1, 2, . . . , n), the effective
EOS parameter of the mixture reads

ωe = pD

ρD
= ω1ρ1 + ω2ρ2 + · · ·

ρ1 + ρ2 + · · · , (1)

being in general a function of time or the (cosmological) redshift z, even if all ωi are constant.
Assuming a flat FLRW metric, Einstein equations for such a model lead to

H 2 = 8πG

3
(ρm + ρ1 + ρ2 + · · ·) (2)

ä

a
= −4πG

3
[ρm(1 + 3ωm) + ρ1(1 + 3ω1) + ρ2(1 + 3ω2) + · · ·], (3)

where ρm stands for the density of matter radiation. Equation (2) entails the following
‘generalized cosmic sum rule’ valid at any z:

�̂m(z) + �̂1(z) + �̂2(z) + · · · = 1; �̂i(z) ≡ ρi(z)

ρc(z)
= 8πGρi(z)

3H 2(z)
(i = m, 1, 2, . . .).

(4)

We denote �̂i(z = 0) ≡ �0
i . If the DE is a single fluid, the corresponding sum rule at present(

�0
m + �0

D = 1
)

enforces ρ0
D to be positive, given that �0

m � 0.3 [1] . If in addition the DE is
self-conserved, then necessarily ρD > 0 at any time. On the other hand, for a composite DE it is
clear that (4) could be fulfilled even if one or more of the DE components have negative energy
density, and then many possibilities open up. For instance, from (3) we note that a component
with ωi < −1/3 and ρi < 0 would decelerate the expansion instead of accelerating it (cf
figure 1). In particular, phantom-like (ωi < −1) components with negative energy density
(ρi < 0) also observe the strong energy condition (SEC, cf figure 1(b)) just the same as matter.
In contrast, the ‘standard’ phantom components (ωi < −1, ρi > 0) not only violate all the
classical energy conditions but also may produce an especially acute anti-gravitational effect
which eventually leads to a kind of singularity known as ‘Big Rip’ [11] whereby all bound
systems, without exception, are eventually ripped off and hence destroyed. At variance with
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these ugly prospects, phantom components with ρi < 0 cause a fast deceleration that may
result into the future stopping and subsequent reversal of the Universe expansion. This is rather
significant since, as we will see, the stopping of the expansion can be linked to the solution
of the coincidence problem. Thus, phantom components with negative energy density (hence
positive pressure) behave as a sort of ‘unclustering matter’ pervading the Universe; it has been
called ‘phantom matter’ (cf PM region in figure 1) [9]. The aforementioned ‘cosmon’, for
instance, can behave as PM.

3. ΛXCDM cosmologies

As a simple realization of the idea of a composite DE, we have considered a dual DE system
consisting of a running � in potential interaction with another dynamical entity X (which
we have referred to as the ‘cosmon’—see [12] for the origin of the name). As explained in
section 1, the X component would stand for any contribution to the DE energy other than the
vacuum energy effects. We call this scenario the �XCDM model [9]. The evolution of � is
(as any parameter in QFT) tied to the renormalization group (RG) in curved spacetime [7].
The running equation we will consider here for the CC density is one that has been thoroughly
studied in the literature [7, 13]:

dρ�

d ln µ
= σ

(4π)2
M2µ2 ≡ 3ν

4π
M2

Pµ2. (5)

Here µ is the energy scale associated with the RG in Cosmology (that we will identify with
the Hubble function, i.e. µ = H at any epoch, see [13]) and ν = (σ/12π)M2

/
M2

P is a free
parameter, M being the effective mass of the heavy particles contributing to the β-function
of the CC and σ = ±1 depending on whether bosons or fermions dominate. If M = MP

(Planck mass), |ν| takes the value ν0 ≡ 1/12π � 0.026. Thus, we naturally expect |ν| � 1.
Introducing a specific model for � allows us to preserve the generality of the cosmon X. Let us
only mention that it could e.g. be some scalar field χ resulting from low-energy string theory
(e.g. a pseudo-dilaton, as in the original paper [12]), or account for the effective behaviour of a
mixture of dynamical fields of various sorts and/or higher order curvature terms in the action.
We really do not need to specify its ultimate nature here because, as we shall see, the kind of
cosmological implications that we will investigate (in particular its impact on the coincidence
problem) do not depend on it.

We start the formulation of the model from the most general form of the Bianchi identity
on both sides of Einstein’s equations: ∇νGµν = 8π∇ν(GTµν) = 0, where Tµν is the effective
energy–momentum tensor including all the terms on the rhs of Einstein’s equations. Assuming
a FLRW metric and describing Tµν as a mixture of fluids (including matter), the µ = 0
component of the Bianchi identity above yields

d

dt

[
G

(∑
i

ρi

)]
+ GH

∑
i

αiρi = 0, αi ≡ 3(1 + ωi), (6)

where the various ρi stand for the energy densities of the different fluids. In our case, we have
matter radiation and a composite DE:

ρm = ρM + ρR, ρD = ρX + ρ�, (7)

ρX(t) being the dynamical density of the cosmon and ρ�(t) the energy density of the running
�. In principle, we also admit the possibility of having a variable Newton’s coupling,
G = G(t). Note that this time variability of the cosmological parameters is consistent with
the cosmological principle and that the general covariance of the theory is insured by the
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fulfilment of the general Bianchi identity (6). The two DE components have EOS parameters
ω� = −1 and ωX, respectively, with

−1 − δ/3 < ωX < −1/3 �⇒ −δ < αX < 2 < αm (δ � 0), (8)

i.e. X can be quintessence or phantom-like. We consider two possible realizations of the
�XCDM model, in both cases with local conservation of matter:

(i) Type I �XCDM model: Ġ = 0 and ρm conserved, hence ρD is also conserved.
(ii) Type II �XCDM model: Ġ �= 0 with ρm and ρX conserved.

Next we will explain the main features of these two models, showing that they can both
alleviate the coincidence problem and match the available data. Comparatively, modified
(interactive) quintessence models can tackle the coincidence problem only at the expense
of matter non-conservation [6]. Herein we limit ourselves to the simplest case, in which
spatial flatness and constant ωX are assumed, although more general results can be obtained
analytically [9].

4. Type I ΛXCDM models

In this case, we assume that Newton’s coupling G is constant and matter radiation is conserved,
ρ̇m +αmρmH = 0. These conditions in turn imply the conservation of the total DE density ρD.
The relevant set of equations are the Friedmann equation (2), the conservation of DE arising
from the Bianchi identity (6) and the RG model for � (5):

H 2 = 8πG

3
(ρm + ρ� + ρX), (9)

ρ̇D + αDρDH = ρ̇� + ρ̇X + αXρXH = 0, (10)

dρ�

d ln H
= 3ν

4π
M2

PH 2. (11)

These equations can be rewritten as an autonomous system in terms of the new independent
variable ζ = −ln(1 + z) (the asymptotic past and future lying at ζ = −∞ and ζ = ∞,
respectively, and the present at ζ = z = 0):

�′
X = −[ναm + (1 − ν)αX]�X − ναm�� + ναm�c,

�′
� = ν(αm − αX)�X + ναm�� − ναm�c,

�′
c = (αm − αX)�X + αm�� − αm�c,

(12)

where ′ ≡ d/dζ . In the previous system, the density fractions �i are normalized with respect
to the present critical energy density (in contrast to the �̂i in (4)):

�i(z) = ρi(z)

ρ0
c

= 8πGρi(z)

3H 2
0

(i = X,�, c). (13)

Clearly, �i(z)/�̂i(z) = H 2(z)
/
H 2

0 = �c(z). The solution of (12) reads as follows:

Ω(ζ ) ≡ (�X(ζ ),��(ζ ),�c(ζ )) = C1v1e
λ1ζ + C2v2e

λ2ζ + C3v3, (14)

with

λ1 = −αX(1 − ν), λ2 = −αm, λ3 = 0.

v1 = (1 − ν, ν, 1), v2 =
( −ναm

αm − αX
, ν, 1

)
, v3 = (0, 1, 1).

(15)
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C1 = 1 − C2 − C3, C2 = �0
m(αm − αX)

αm − αX(1 − ν)
, C3 = �0

� − ν

1 − ν
. (16)

The coefficients Ck result from the boundary conditions at present: �i(0) = �0
i = �̂i(0).

Assuming the aforementioned prior �0
m � 0.3, our model contains three free parameters: ν,

ωX and �0
� = �0

D − �0
X � 0.7 − �0

X.

4.1. Nucleosynthesis and the coincidence problem

As the expansion rate is sensitive to the amount of DE, we must ensure that our model does
not spoil the predictions of primordial nucleosynthesis. Thus, we will ask the ratio between
DE and matter radiation densities,

r(z) ≡ ρD(z)

ρm(z)
, (17)

to be small enough at the nucleosynthesis epoch, say |rN ≡ r(z = zN ∼ 109)| � 10%
([13, 14], see also [15]). From solution (14) and after a straightforward calculation, we find
that

|rN| < 10% ⇐⇒ |ε|
ωR − ωX + ε

� |ε| < 0.1, ε ≡ ν(1 + ωX), (18)

where ωR = 1/3 is the EOS parameter of radiation. Note that only for ν = 0 the DE density
would be vanishing at the nucleosynthesis time; this shows that, in general, in the type I
�XCDM model the presence of DE takes place at all epochs of the evolution. Looking again
at (17) but this time at the matter dominated era, one can show that r can have—at most—
one extremum at some z = ze in the future [9]. We are interested in the case in which this
extremum is a maximum, since this will help solving the cosmic coincidence problem. Indeed,
if r remains bounded from above—and maybe even of order 1—for the entire Universe lifetime,
the fact that r0 ≡ r(z = 0) ∼ 1 would no longer look like a coincidence. The conditions for
the extremum to exist and to be a maximum are shown to be [9]

�0
� − ν

ωX
(
�0

X + ν�0
M

) − ε
(
1 − �0

�

) > 0 and αX
(
�0

� − ν
)

< 0. (19)

Remarkably, the existence of a maximum for r(z) entails a halt of the cosmic expansion
at some future point z = zs (stopping redshift). To prove this, let us note that Einstein’s
equations (9) and (3) for the type I �XCDM model imply

lim
z→−1

H 2
/
H 2

0 = lim
z→−1

�D, (20)

ä

a

∣∣∣∣
t=t0

= −4πG

3
[(1 + r0) + r ′(0)], (21)

where z → −1 stands for the remote future, t0 is the present time and r ′(z) = dr(z)/dz. Since
r0 > 0, the current state of accelerated expansion requires r ′(z = 0) < 0 (i.e. r is presently
increasing with time ṙ(t = t0) > 0). Now, if the rhs of (20) is positive, limz→−1 r(z) = ∞ and
the ratio is unbounded. Moreover, knowing that the function r = r(z) can have at most one
extremum [9] the foregoing conditions imply that there cannot be any extremum in the future.
Thus, in this case the DE cannot become negative to stop the expansion. If, instead, the rhs of
(20) is negative, then H(zs) = 0 at some zs > −1. However, being r presently positive and
increasing with time, this situation can only be compatible with limz→−1 r(z) = −∞ if there
is a maximum of r at some point between z = 0 and z = zs (q.e.d.). Note that the condition
r ′(0) < 0 and the uniqueness of the extremum enforce the maximum to occur always in the
future.
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4.2. Some possible scenarios

Within the type I �XCDM model, there are many scenarios compatible with stopping (and
subsequent reversal) of the expansion in the future. As shown in the last section, this
implies the existence of a maximum of the ratio r with the consequent alleviation of the
coincidence problem. A very convenient form to identify these scenarios is by studying the
phase trajectories of the autonomous system (12). Note that an asymptotically negative value
of the third component of (14), �c(z) ≡ H 2(z)

/
H 2

0 , would indicate the existence of a stopping
point. Let us discuss here just two representative cases—for a comprehensive analysis see [9].

• −δ < αX < 0 (phantom-like cosmon) and ν < 1. Looking at the eigenvalues (15), we
see that λ1 > 0, λ2 < 0, so there is a saddle point in the phase space

Ω∗ = (
0,�0

�,�0
�

)
, (22)

from which all trajectories diverge with the evolution (as ζ → ∞). However, if C1 < 0
in (15), �c(z → −1) < 0, implying the stopping of the expansion as discussed above.
Using (18), the stopping condition acquires the form

C1 = 1 − C2 − C3 = 1 − �0
�

1 − ν
− �0

M(ωm − ωX)

ωm − ωX + ε
� 1 − �0

�

1 − ν
− �0

M < 0. (23)

We can check that this relation insures (a) the fulfilment of the conditions (19) for the
existence of a maximum and (b) �0

X < −ν�0
M. Thus for 0 < ν < 1 the cosmon behaves

as PM, whilst for ν < 0 behaves as a ‘conventional’ phantom.
• 0 < αX < 2 (quintessence-like cosmon) and ν < 1. Now the non-vanishing eigenvalues

are both negative λ1 < 0, λ2 < 0. Therefore, there is a (ν-dependent) node towards which
all phase trajectories are attracted, namely

Ω∗ =
(

0,
�0

� − ν

1 − ν
,
�0

� − ν

1 − ν

)
. (24)

This time, the attraction towards the node will be stopped for the curves satisfying

�0
� − ν

1 − ν
< 0 ⇒ �0

� < ν < 1. (25)

The projections onto the (�m,�D) plane of the phase trajectories for these two scenarios
have been plotted in figures 2(a) and (b). They show respectively the existence of a saddle
point or a node and the stopping of the curves that fulfil (23) or (25). Note that the solution
of the coincidence problem can take place in both scenarios even for the simplest situation,
namely for ν = 0. In this case, the DE of the model is just the sum of a self-conserved cosmon
and a strictly constant �:

�D(z) = �0
� + �0

X(1 + z)αX , (26)

and the stopping conditions deduced above just read �0
X < 0 (case 1) and �0

� < 0 (case
2), corresponding to a Universe containing phantom matter or a negative �, respectively. In
both cases the overall effective EOS of the DE is quintessence-like. Even though ν = 0 does
the job as far as the cosmic coincidence problem is concerned, the possibility of solving that
problem also for ν �= 0 allows us to modulate the effective EOS behaviour of the model and
describe features that can be potentially observed in it (see the following section).
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Figure 2. Phase trajectories of the autonomous system (12) in the (�m, �D) plane for different
values of the parameters. Dashed lines show the parts of the curves corresponding to our past,
full lines the parts between the present moment and the stopping (if there is stopping) and dotted
lines the inaccessible part of the trajectory after the stopping; (a) ωX = −1.85, ν = −ν0 (cf case 1
in the text) and different choices of �0

� (b) �0
� = −2, ν = 0.96 (cf case 2) and different values

of ωX.
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Figure 3. (a) The expansion rate (normalized to its present value H0) as a function of the cosmic
time, t, in the type I model for the following parameter values: ωX = −1.85,�0

� = 0.75 and
ν = −ν0, 0, +ν0, showing the existence of a stopping point; (b) The ratio r = ρD/ρm (in units of
its present value r0) as a function of t, illustrating the presence of both a maximum and a stopping
point in the future, what constitutes a possible explanation of the coincidence problem. The cosmic
time t is measured in Hubble time units H−1

0 ; the present moment lies at t � 0.99 (i.e. 13.7 Gyr).

4.3. A numerical example

Let us now illustrate the properties of the model through a specific example, namely
ωX = −1.85,�0

� = 0.75 and different values of ν < 1. These values correspond to the
first scenario discussed in the previous section. As long as we take ν sufficiently small,
condition (23) will be satisfied and we should get both the stopping of the expansion and a
maximum in the ratio r. In figures 3(a), (b) we can observe these features for three different
values of ν (0 and ±ν0). There we have plotted the Hubble function and the ratio r as functions
of the cosmic time—which requires solving numerically the model. We see that the maximum
and the stopping point take place far away in the future. In these cases, the halt of the
expansion is caused by the behaviour of the cosmon as PM rather than to a negative �, as we
can appreciate in figure 4(a). In this plot, we also note that the signs of the two components
of the DE (which are individually unobservable) can change during the evolution.
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Figure 4. (a) The evolution of the density fraction � for the total DE and each one of its
components, X and �, in the type I model. The values of the parameters are the same as in figure 3
with the choice ν = −ν0. We see that the stopping of the expansion (characterized by the value
�D(zs) = −�m(zs)) is achieved thanks to �X being negative, i.e. to the behaviour of the cosmon
as PM; (b) Different behaviours of the EOS of the �XCDM model for the same ωX and �0

� as in
figure 3 and different values of ν.

Of course, in order to claim that our model provides a solution, or at least an important
alleviation of the coincidence problem, we must be sure that this holds for a significant part
of the full parameter space. We have confirmed this point through a comprehensive numerical
sampling of it, and moreover we have found that the maximum of the ratio r can stay rather
small, say 1–10 times its present value r0 [9].

The comparison between a particular DE model and the observational data is made mainly
through the EOS. The effective EOS of the type I �XCDM model is given by

ω(I)
e = pD

ρD
= p� + pX

ρ� + ρX
= −ρ� + ωXρX

ρ� + ρX
= −1 + (1 + ωX)

ρX

ρD
, (27)

and it can display a rich variety of behaviour while being in agreement with the most recent
data [2]. This is shown in figure 4(b), where we see that, depending on the value of ν, the
EOS can be quintessence-like, mimic (in some cases almost exactly) a pure CC term or even
present a mild transition from the phantom to the quintessence regime.

4.4. Asymptotic behaviour in the past: a signature of the model

Let us finally elaborate on a characteristic feature of type I models with running � that could
serve to distinguish them from other DE models. From solution (14), we find that in the
asymptotic past

�D(z � 1) = − ε

ωm − ωX + ε
�0

m(1 + z)αm , (ν �= 0) (28)

ω(I)
e (z � 1) = −1 + (1 + ωX)

�X(z � 1)

�D(z � 1)
→ ωm, (ν �= 0). (29)

Thus, surprisingly, at very high redshift the effective EOS of the DE coincides with that of
matter radiation: ω(I)

e → ωm. Moreover, the Hubble function at high redshift reads

H 2(z � 1) � H 2
0 �0∗

m (1 + z)αm , �0∗
m = �0

m

(
1 − ε

ωm − ωX + ε

)
, (30)
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which means that the value �0∗
m of the density fraction of matter inferred from very high z data

(e.g. from CMB) could differ from that obtained by low z experiments
(
�0

m

)
, typically from

supernovae. The relative difference,
∣∣�0∗

m − �0
m

∣∣/�0
m, is given just by the same expression

as the nucleosynthesis constraint (18); therefore this effect could amount to a measurable
10% discrepancy and, if detected, would constitute a distinctive signature of type I �XCDM
models.

5. Type II ΛXCDM models

In this case, we let the Newton coupling G be variable and ask for the conservation of
matter radiation. These two conditions allow in turn the conservation of the X component,
ρ̇X + αXρXH = 0. We adopt the same RG equation (5) as before for the running of �. With
all this in mind, we obtain the set of equations defining the type II models:

H 2 = 8πG

3
(ρm + ρ� + ρX), (31)

(ρm + ρ� + ρX) dG + G dρ� = 0, (32)

dρ�

d ln µ
= 3ν

4π
M2

Pµ2. (33)

This system can be analytically solved to determine G as a function of the scale µ = H , with
the following result:

G(H) = G0

1 + ν ln H 2

H 2
0

, (34)

where G0 = 1
/
M2

P. This equation suggests that ν also acts as the β-function for the RG
running of G. We can also express G = G(z) as an implicit function of the redshift z:

1

g(z)
− 1 + ν ln

(
1

g(z)
− ν

)
= ν ln

[
�0

m(1 + z)αm + �0
X(1 + z)αX + �0

� − ν
]
, (35)

where we have defined g(z) ≡ G(z)/G0. Once this function is determined, ρ� = ρ�(z) can
also be derived:

ρ�(z) = ρ0
� + ν(ρm(z) + ρX(z))g(z) − νρ0

c

1 − νg(z)
. (36)

Even though the model could be solved from these equations, it is very convenient to find
an effective equation of state approach to it, since this will allow us to better compare our
model to alternative ones—e.g. quintessence scalar field models—and to confront it with the
experimentally measured EOS. The procedure is thoroughly described in [14, 16]. The basic
idea is that even a model with a non-conserved DE (like this one) can be represented by means
of an ‘effective EOS’ corresponding to a self-conserved dark energy. Thus we can contemplate
the type II model under two different perspectives.

• In the original picture we see the model as it is: in this case, with self-conserved
cosmon and matter-radiation densities together with variable cosmological parameters G
(Newton’s coupling) and ρ� (vacuum energy density).

• In the DE picture we assume that the model (regardless of its real characteristics) has a
constant G and conserved DE and matter radiation. The effective EOS arising from this
picture is the one directly comparable to the experimental one.
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Figure 5. Some examples of the behaviour of the effective EOS function for the type II
cosmon models (38): (a) ωX = −1.65, ν = +0.001,�0

� = 0.67��0
m = 0.01 (solid line) and

ωX = −0.85, ν = −0.001,�0
� = 0.3,��0

m = −0.01 (dash-dotted), illustrating the two types
of possible transitions in the recent past; (b) ωX = −0.95, ν = 0.001,�0

� = 0.75,��0
m = 0

(solid line) and ωX = −1.15, ν = −0.001,��0
m = 0 and �0

� = 0.4 (dashed) or �0
� = 0.8

(dash-dotted), showing examples in which the EOS parameter mimics that of a CC or remains
in the phantom or quintessence regime for all the redshifts attainable by present and scheduled
supernovae experiments.

The formula for ωe for type II models can be easily obtained from the condition that the
DE is conserved in the DE picture, dρ̃D/dt + αeρ̃DH = 0, where ρ̃D is the DE density in this
picture. It reads

ω(II)
e (z) = −1 +

1 + z

3ρ̃D(z)

dρ̃D(z)

dz
. (37)

As the expansion history should not depend on the picture, we can match Hubble functions in
each picture, hence G(ρm + ρ� + ρX) = G0(ρm + ρ̃D). Substituting this equation in (31) and
solving for dρ̃D(z)/dz, we obtain the effective EOS parameter (37) of the type II �XCDM
model in a suitable form

ω(II)
e (z) = −1 +

δ(z)

3�̃D(z)
, (38)

where

δ(z) = αm
(
g(z)�0

m − �̃0
m

)
(1 + z)αm + αXg(z)�0

X(1 + z)αX . (39)

Note that the various �s could depend (slightly) on the picture as they result from different fits
to the same data, i.e. in general ��0

m ≡ �0
m −�̃0

m �= 0. By requiring the same nucleosynthesis
condition as in the previous model (i.e. |r(zN)| � 10%), we find that the only parameter
constrained this time is ν, which must satisfy the rather severe bound |ν| � 10−3 in order
not to disturb nucleosynthesis predictions. Recall that for type I models the bound is on the
parameter ε and is not so stringent, see equation (18).

5.1. Numerical analysis of the EOS

Although the coincidence problem can be solved similarly within the type II �XCDM
models [10], here we will just focus on the distinct behaviour of the effective EOS parameter
(38), which are exemplified in figures 5(a), (b). We see that we can have transitions from
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quintessence into phantom regime (and vice versa), or just remain quintessence or phantom-
like across the entire redshift interval relevant to SNIa observations. The model can even
closely mimic a pure CC term while retaining its dynamical nature, which is revealed in its
future behaviour through the presence of a stopping point. In all these cases, the current value
of ωe is close to −1, hence compatible with the available data [2]. Finally, let us mention that
in this model the behaviour of ωe is modulated by the parameter ��0

m, which in this sense
plays a similar role as ν in the type I models.

6. Conclusions

�XCDM models with local conservation of matter reveal themselves as generically capable
to solve the cosmic coincidence problem, or at least to highly mitigate it. We have shown that
irrespective of how the Bianchi identity is implemented among the two density components
(ρ�, ρX) of the DE fluid, the overall behaviour of the cosmological model is such that the ratio
between the total DE and matter densities, r = ρD/ρm = (ρ� + ρX)/ρm, remains bounded
throughout the entire history of the Universe, and can be of order 1 at present. This result is
model independent, in the sense that we have not compromised the nature of the ‘cosmon’
entity X (in particular we did not tie it to a scalar field with some peculiar potential). We
just used two independent ways of realizing the geometric Bianchi identity through the local
conservation laws of the DE components, together with the local conservation of matter and
a renormalization group inspired law for the running of the cosmological term.
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